If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+81x=0
a = 49; b = 81; c = 0;
Δ = b2-4ac
Δ = 812-4·49·0
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-81}{2*49}=\frac{-162}{98} =-1+32/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+81}{2*49}=\frac{0}{98} =0 $
| X^2-5x=-14x | | 40+50x=50x | | -8-6n-5n=8 | | 7(x+3)+x=8x+2 | | 8-7n-5n=8 | | 2m-19=-24/m | | 0.3x+0.5x=0.1x+2 | | 7x+21+x=8x+2 | | 6x=3x-33 | | 7(x+1)-2=8x-x-4 | | 7x+21=8x+2 | | G(n-3)=72 | | G(n-3=72 | | y3+y2-21y-45=0 | | (4x-5)x-69=78 | | 2x+100=93x+27 | | 29x+49=23x+100 | | 29x+8=29x+16 | | 29x+8=29×+16 | | 2x+29=2x+7 | | 4x-40=30 | | (x-2)÷2=16÷8 | | 12x+26=365 | | 20={{x/5}} | | 8x-75=109 | | 9x-27=117 | | 768=x×3/4x | | 4x(2+3)=6 | | 2(2x-5)=17 | | 10a+4=8a | | K=12x×7x | | 7x-1=-2x-28 |